A4: Dynamik der Relaxation von Wasser an Grenzflächen
Ziel des Projektes ist die Entwicklung von Multiskalen- Ansätzen, um ein besseres Verständnis von Relaxationsmechanismen der Vibrationen in Wasser an Grenzflächen und in eingeschränkten Geometrien zu erzielen. In der ersten Förderperiode wurde eine effiziente Methode zur Beschreibung der molekularen Vibrationsrelaxation entwickelt, die auf gezielten Einzelmolekülanregungen und neuen Deskriptoren basiert. In der zweiten Förderperiode sollen zusätzlich nukleare Quanteneffekte (NQE) berücksichtigt werden, die in Wasser vermutlich wichtig sind. Es soll ein ein Multi-Resolutions-Simulationsverfahren entwickelt werden, in dem die elektronische Struktur über Kraftfelder berücksichtigt wird – die durch Vergleich mit ab-initio Simulationen validiert werden – und die NQEs explizit mit Hilfe von Pfadintegralen simuliert werden.
Role of pH in the synthesis and growth of gold nanoparticles using L-Asparagine: A combined experimental and simulation study
Journal of Physics: Condensed Matter,
(2021);
doi:10.1088/1361-648x/abf6e3
Role of image charges in ionic liquid confined between metallic interfaces
Physical Chemistry Chemical Physics 22 (19),
10786-10791
(2020);
doi:10.1039/d0cp00409j
Structure and Dynamics of Solid/Liquid Interfaces
Surface and Interface Science: Volume 7: Liquid and Biological Interfaces Volume 7 (Chapter 50),
143-193
(2020);
doi:10.1002/9783527680597.ch50
Surface Charges at the CaF 2 /Water Interface Allow Very Fast Intermolecular Vibrational‐Energy Transfer
Angewandte Chemie International Edition 59 (31),
13116-13121
(2020);
doi:10.1002/anie.202004686
Oberflächenladungen an der CaF 2 ‐Wasser‐Grenzfläche erlauben eine sehr schnelle intermolekulare Übertragung von Schwingungsenergie
Angewandte Chemie 132 (31),
13217-13222
(2020);
doi:10.1002/ange.202004686
Heterogeneous Interactions between Gas-Phase Pyruvic Acid and Hydroxylated Silica Surfaces: A Combined Experimental and Theoretical Study
The Journal of Physical Chemistry A 123 (5),
983-991
(2019);
doi:10.1021/acs.jpca.8b10224
Understanding the Acidic Properties of the Amorphous Hydroxylated Silica Surface
The Journal of Physical Chemistry C 123 (28),
17343-17352
(2019);
doi:10.1021/acs.jpcc.9b04137
Insight into induced charges at metal surfaces and biointerfaces using a polarizable Lennard–Jones potential
Nature Communications 9 (1),
(2018);
doi:10.1038/s41467-018-03137-8
Increased Acid Dissociation at the Quartz/Water Interface
The Journal of Physical Chemistry Letters 9 (9),
2186-2189
(2018);
doi:10.1021/acs.jpclett.8b00686
Dynamical heterogeneities of rotational motion in room temperature ionic liquids evidenced by molecular dynamics simulations
The Journal of Chemical Physics 148 (19),
193811
(2018);
doi:10.1063/1.5005143
A Microscopic Interpretation of Pump–Probe Vibrational Spectroscopy Using Ab Initio Molecular Dynamics
The Journal of Physical Chemistry B 122 (25),
6604-6609
(2018);
doi:10.1021/acs.jpcb.8b04159
Atypical titration curves for GaAl12 Keggin-ions explained by a joint experimental and simulation approach
The Journal of Chemical Physics 148 (22),
222836
(2018);
doi:10.1063/1.5024201
A set-up for simultaneous measurement of second harmonic generation and streaming potential and some test applications
Journal of Colloid and Interface Science 529,
294-305
(2018);
doi:10.1016/j.jcis.2018.06.017
Unravelling the GLY-PRO-GLU tripeptide induced reconstruction of the Au(110) surface at the molecular scale
Surface Science 677,
271-277
(2018);
doi:10.1016/j.susc.2018.07.006
Nanophase Segregation of Self-Assembled Monolayers on Gold Nanoparticles
ACS Nano 11 (7),
7371-7381
(2017);
doi:10.1021/acsnano.7b03616
π+–π+ stacking of imidazolium cations enhances molecular layering of room temperature ionic liquids at their interfaces
Phys. Chem. Chem. Phys. 19,
2850
(2017);
URL: http://pubs.rsc.org/is/content/articlehtml/2016/cp/c6cp07034e
A new force field including charge directionality for TMAO in aqueous solution
J. Chem. Phys. 145,
064103
(2016);
doi:10.1063/1.4960207
Molecular Dynamics Simulations of SFG Librational Modes Spectra of Water at the Water–Air Interface
J. Phys. Chem. C 120 (33),
18665–18673
(2016);
doi:10.1021/acs.jpcc.6b06371
Molecular Mechanism of Water Evaporation
Phys. Rev. Lett. 115 (23),
236102
(2015);
doi:10.1103/physrevlett.115.236102
The surface roughness, but not the water molecular orientation varies with temperature at the water–air interface
Phys. Chem. Chem. Phys. 17 (36),
23559-23564
(2015);
doi:10.1039/c5cp04022a
Ultrafast Vibrational Dynamics of Water Disentangled by Reverse Nonequilibrium Ab Initio Molecular Dynamics Simulations
Physical Review X 5 (2),
021002
(2015);
doi:10.1103/physrevx.5.021002
Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function
The Journal of Chemical Physics 143 (12),
124702
(2015);
doi:10.1063/1.4931106
Ab Initio Liquid Water Dynamics in Aqueous TMAO Solution
J. Phys. Chem. B 119 (33),
10597–10606
(2015);
doi: 10.1021/acs.jpcb.5b02579
Lipid Carbonyl Groups Terminate the Hydrogen Bond Network of Membrane-Bound Water
J. Phys. Chem. Lett., 6 (22),
4499–4503
(2015);
doi:10.1021/acs.jpclett.5b02141
Kontakt
- Prof. Dr. Marialore Sulpizi
- Institut für Physik
- Universität Mainz
- Staudingerweg 7
- D-55128 Mainz
- Tel: +49 6131 39 23641
- Fax: +49 6131 39 25441
- sulpizinYvjnKGTY@BxMqBqxxuni-mainz.de
- http://www.staff.uni-mainz.de/sulpizi