C1:Molekulare Felder als Vermittler zwischen Teilchen-basierten und Kontinuumsmodellen für makromolekulare Systeme
In dem Projekt soll das Potential sogenannter ”molekularer Felder” als Vermittler zwischen Teilchen-basierten und Kontinuumsmodellen von makromolekularen Systemen erforscht werden. Molekulare Feld-Theorien operieren mit kontinuierlichen Dichtefeldern und beinhalten doch Information über die molekulare Struktur von Materialien. In der ersten Förderperiode haben wir systematisch die Eigenschaften von Partikelmodellen und molekularen Feldern verglichen, und Multi-Resolutions-Ansätze entwickelt, die es ermöglichen, beide Ebenen in einer Simulation zu kombinieren. Darauf aufbauend sollen (i) systematische Methoden zur Konstruktion dynamischer Molekularfeldmodelle aus Simulationen mit höherer Auflösung entwickelt werden, (ii) die Multiresolutionsmodelle weiter optimiert werden, und (iii) diese auf interessente Materialien angewendet werden wie z.B. transiente Netzwerke.
Dynamic coarse-graining of polymer systems using mobility functions
Journal of Physics: Condensed Matter33 (19),194004 (2021);
doi:10.1088/1361-648x/abed1b
Adsorption Active Diblock Copolymers as Universal Agents for Unusual Barrier-Free Transitions in Stimuli-Responsive Brushes
Macromolecules54 (6),2592-2603 (2021);
doi:10.1021/acs.macromol.0c02095
Defects and defect engineering in Soft Matter
Soft Matter16 (48),10809-10859 (2020);
doi:10.1039/d0sm01371d
Dynamic Self-Consistent Field Approach for Studying Kinetic Processes in Multiblock Copolymer Melts
Polymers12 (10),2205 (2020);
URL: https://www.mdpi.com/2073-4360/12/10/2205 doi:10.3390/polym12102205
Bottom-up Construction of Dynamic Density Functional Theories for Inhomogeneous Polymer Systems from Microscopic Simulations
Macromolecules53 (9),3409-3423 (2020);
doi:10.1021/acs.macromol.0c00130
Using Copolymers to Design Tunable Stimuli-Reponsive Brushes
Macromolecules53 (13),5326-5336 (2020);
doi:10.1021/acs.macromol.0c00674
Shear Modulus of an Irreversible Diblock Copolymer Network from Self-Consistent Field Theory
Macromolecules52 (24),9569-9577 (2019);
doi:10.1021/acs.macromol.9b01985
Polydispersity Effects on Interpenetration in Compressed Brushes
Macromolecules52 (4),1810-1820 (2019);
doi:10.1021/acs.macromol.8b02361
How ill-defined constituents produce well-defined nanoparticles: Effect of polymer dispersity on the uniformity of copolymeric micelles
Physical Review Materials3 (2), (2019);
doi:10.1103/physrevmaterials.3.026002
Phase transitions in single macromolecules: Loop-stretch transition versus loop adsorption transition in end-grafted polymer chains
The Journal of Chemical Physics148 (4),044903 (2018);
doi:10.1063/1.5013346
Tuning Transition Properties of Stimuli-Responsive Brushes by Polydispersity
Advanced Functional Materials28 (49),1800745 (2018);
doi:10.1002/adfm.201800745
Dynamic Density Functional Theories for Inhomogeneous Polymer Systems Compared to Brownian Dynamics Simulations
Macromolecules50 (24),9831-9845 (2017);
doi:10.1021/acs.macromol.7b02017
Hybrid particle-continuum simulations coupling Brownian dynamics and local dynamic density functional theory
Soft Matter13 (43),7938-7947 (2017);
doi:10.1039/c7sm01749a
Simulating copolymeric nanoparticle assembly in the co-solvent method: How mixing rates control final particle sizes and morphologies
Polymer126,9-18 (2017);
doi:10.1016/j.polymer.2017.07.057
Self-Assembly of Polymeric Particles in Poiseuille Flow: A Hybrid Lattice Boltzmann/External Potential Dynamics Simulation Study
Macromolecules50 (11),4474-4490 (2017);
doi:10.1021/acs.macromol.6b02684
Combining cell-based hydrodynamics with hybrid particle-field simulations: efficient and realistic simulation of structuring dynamics
Soft Matter13 (8),1594-1623 (2017);
doi:10.1039/c6sm02252a
Numerical reduction of self-consistent field models of macromolecular systems
Proc. Appl. Math. Mech.16,915-916 (2016);
doi:10.1002/pamm.201610446
A hybrid particle-continuum resolution method and its application to a homopolymer solution
The European Physical Journal Special Topics225 (8-9),1527-1549 (2016);
doi:10.1140/epjst/e2016-60096-8
Stimuli-Responsive Brushes with Active Minority Components: Monte Carlo Study and Analytical Theory
Macromolecules48 (11),3775-3787 (2015);
doi:10.1021/acs.macromol.5b00563
Using field theory to construct hybrid particle–continuum simulation schemes with adaptive resolution for soft matter systems
New Journal of Physics15 (12),125009 (2013);
doi:10.1088/1367-2630/15/12/125009
Kontakt
- Prof. Dr.FriederikeSchmid
- Institut für Physik
- Universität Mainz
- Staudingerweg 9
- D-55128Mainz
- Tel:+49 6131 3920365
- Fax:+49 5131 3920496
- Sekr:+49 6131 3920495
- friederike.schmidxHbJ-Y@RBRletlQ.luni-mainz.de
- https://www.komet1.physik.uni-mainz.de/people/friederike-schmid/