A4:Understanding Water Relaxation Dynamics at Interfaces
The aim of the project is to develop multiscale approaches to understand the mechanisms of vibrational energy relaxation in water at interfaces and in confined environment. In the first funding period, we have developed an efficient method to describe molecular vibrational relaxation based on single molecule excitations and the use of new descriptors. In the second funding period, we plan to include nuclear quantum effects (NQEs), which may be important in water. We aim to develop a multi resolution scheme where the electronic structure is included with an effective force field, which accurately reproduces high-level ab initio calculations, while the NQEs are explicitly addressed with the path integral formalism.
Role of pH in the synthesis and growth of gold nanoparticles using L-Asparagine: A combined experimental and simulation study
Journal of Physics: Condensed Matter, (2021);
doi:10.1088/1361-648x/abf6e3
Role of image charges in ionic liquid confined between metallic interfaces
Physical Chemistry Chemical Physics22 (19),10786-10791 (2020);
doi:10.1039/d0cp00409j
Structure and Dynamics of Solid/Liquid Interfaces
Surface and Interface Science: Volume 7: Liquid and Biological InterfacesVolume 7 (Chapter 50),143-193 (2020);
doi:10.1002/9783527680597.ch50
Surface Charges at the CaF 2 /Water Interface Allow Very Fast Intermolecular Vibrational‐Energy Transfer
Angewandte Chemie International Edition59 (31),13116-13121 (2020);
doi:10.1002/anie.202004686
Oberflächenladungen an der CaF 2 ‐Wasser‐Grenzfläche erlauben eine sehr schnelle intermolekulare Übertragung von Schwingungsenergie
Angewandte Chemie132 (31),13217-13222 (2020);
doi:10.1002/ange.202004686
Heterogeneous Interactions between Gas-Phase Pyruvic Acid and Hydroxylated Silica Surfaces: A Combined Experimental and Theoretical Study
The Journal of Physical Chemistry A123 (5),983-991 (2019);
doi:10.1021/acs.jpca.8b10224
Understanding the Acidic Properties of the Amorphous Hydroxylated Silica Surface
The Journal of Physical Chemistry C123 (28),17343-17352 (2019);
doi:10.1021/acs.jpcc.9b04137
Insight into induced charges at metal surfaces and biointerfaces using a polarizable Lennard–Jones potential
Nature Communications9 (1), (2018);
doi:10.1038/s41467-018-03137-8
Increased Acid Dissociation at the Quartz/Water Interface
The Journal of Physical Chemistry Letters9 (9),2186-2189 (2018);
doi:10.1021/acs.jpclett.8b00686
Dynamical heterogeneities of rotational motion in room temperature ionic liquids evidenced by molecular dynamics simulations
The Journal of Chemical Physics148 (19),193811 (2018);
doi:10.1063/1.5005143
A Microscopic Interpretation of Pump–Probe Vibrational Spectroscopy Using Ab Initio Molecular Dynamics
The Journal of Physical Chemistry B122 (25),6604-6609 (2018);
doi:10.1021/acs.jpcb.8b04159
Atypical titration curves for GaAl12 Keggin-ions explained by a joint experimental and simulation approach
The Journal of Chemical Physics148 (22),222836 (2018);
doi:10.1063/1.5024201
A set-up for simultaneous measurement of second harmonic generation and streaming potential and some test applications
Journal of Colloid and Interface Science529,294-305 (2018);
doi:10.1016/j.jcis.2018.06.017
Unravelling the GLY-PRO-GLU tripeptide induced reconstruction of the Au(110) surface at the molecular scale
Surface Science677,271-277 (2018);
doi:10.1016/j.susc.2018.07.006
Nanophase Segregation of Self-Assembled Monolayers on Gold Nanoparticles
ACS Nano11 (7),7371-7381 (2017);
doi:10.1021/acsnano.7b03616
π+–π+ stacking of imidazolium cations enhances molecular layering of room temperature ionic liquids at their interfaces
Phys. Chem. Chem. Phys.19,2850 (2017);
URL: http://pubs.rsc.org/is/content/articlehtml/2016/cp/c6cp07034e
A new force field including charge directionality for TMAO in aqueous solution
J. Chem. Phys.145,064103 (2016);
doi:10.1063/1.4960207
Molecular Dynamics Simulations of SFG Librational Modes Spectra of Water at the Water–Air Interface
J. Phys. Chem. C120 (33),18665–18673 (2016);
doi:10.1021/acs.jpcc.6b06371
Molecular Mechanism of Water Evaporation
Phys. Rev. Lett.115 (23),236102 (2015);
doi:10.1103/physrevlett.115.236102
The surface roughness, but not the water molecular orientation varies with temperature at the water–air interface
Phys. Chem. Chem. Phys.17 (36),23559-23564 (2015);
doi:10.1039/c5cp04022a
Ultrafast Vibrational Dynamics of Water Disentangled by Reverse Nonequilibrium Ab Initio Molecular Dynamics Simulations
Physical Review X5 (2),021002 (2015);
doi:10.1103/physrevx.5.021002
Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function
The Journal of Chemical Physics143 (12),124702 (2015);
doi:10.1063/1.4931106
Ab Initio Liquid Water Dynamics in Aqueous TMAO Solution
J. Phys. Chem. B119 (33),10597–10606 (2015);
doi: 10.1021/acs.jpcb.5b02579
Lipid Carbonyl Groups Terminate the Hydrogen Bond Network of Membrane-Bound Water
J. Phys. Chem. Lett.,6 (22),4499–4503 (2015);
doi:10.1021/acs.jpclett.5b02141
Contact
- Prof. Dr.MarialoreSulpizi
- Institut für Physik
- Universität Mainz
- Staudingerweg 7
- D-55128Mainz
- Tel:+49 6131 39 23641
- Fax:+49 6131 39 25441
- sulpiziXHC-N@AfWrJDuuni-mainz.de
- http://www.staff.uni-mainz.de/sulpizi