C1: Using molecular fields to bridge between particle and continuum representations of macromolecular systems
The goal of this project is to use so-called “molecular field” models – which operate with continuous fields, but still retain explicit information on the molecular structure of materials - as bridges between particle-based and field-based views on macromolecular materials. In the first funding period, we have systematically compared the properties of particle models and established molecular field models, and derived different adaptive resolution schemes that combine the two representations. Building on this, we plan to (i) develop systematic methods for deriving dynamical molecular field models from particle simulations, (ii) further optimize the dynamical adaptive resolution schemes, and (iii) apply them to interesting materials such as transient networks.
Dynamic coarse-graining of polymer systems using mobility functions
Journal of Physics: Condensed Matter 33 (19),
194004
(2021);
doi:10.1088/1361-648x/abed1b
Adsorption Active Diblock Copolymers as Universal Agents for Unusual Barrier-Free Transitions in Stimuli-Responsive Brushes
Macromolecules 54 (6),
2592-2603
(2021);
doi:10.1021/acs.macromol.0c02095
Defects and defect engineering in Soft Matter
Soft Matter 16 (48),
10809-10859
(2020);
doi:10.1039/d0sm01371d
Dynamic Self-Consistent Field Approach for Studying Kinetic Processes in Multiblock Copolymer Melts
Polymers 12 (10),
2205
(2020);
URL: https://www.mdpi.com/2073-4360/12/10/2205
doi:10.3390/polym12102205
Bottom-up Construction of Dynamic Density Functional Theories for Inhomogeneous Polymer Systems from Microscopic Simulations
Macromolecules 53 (9),
3409-3423
(2020);
doi:10.1021/acs.macromol.0c00130
Using Copolymers to Design Tunable Stimuli-Reponsive Brushes
Macromolecules 53 (13),
5326-5336
(2020);
doi:10.1021/acs.macromol.0c00674
Shear Modulus of an Irreversible Diblock Copolymer Network from Self-Consistent Field Theory
Macromolecules 52 (24),
9569-9577
(2019);
doi:10.1021/acs.macromol.9b01985
Polydispersity Effects on Interpenetration in Compressed Brushes
Macromolecules 52 (4),
1810-1820
(2019);
doi:10.1021/acs.macromol.8b02361
How ill-defined constituents produce well-defined nanoparticles: Effect of polymer dispersity on the uniformity of copolymeric micelles
Physical Review Materials 3 (2),
(2019);
doi:10.1103/physrevmaterials.3.026002
Phase transitions in single macromolecules: Loop-stretch transition versus loop adsorption transition in end-grafted polymer chains
The Journal of Chemical Physics 148 (4),
044903
(2018);
doi:10.1063/1.5013346
Tuning Transition Properties of Stimuli-Responsive Brushes by Polydispersity
Advanced Functional Materials 28 (49),
1800745
(2018);
doi:10.1002/adfm.201800745
Dynamic Density Functional Theories for Inhomogeneous Polymer Systems Compared to Brownian Dynamics Simulations
Macromolecules 50 (24),
9831-9845
(2017);
doi:10.1021/acs.macromol.7b02017
Hybrid particle-continuum simulations coupling Brownian dynamics and local dynamic density functional theory
Soft Matter 13 (43),
7938-7947
(2017);
doi:10.1039/c7sm01749a
Simulating copolymeric nanoparticle assembly in the co-solvent method: How mixing rates control final particle sizes and morphologies
Polymer 126,
9-18
(2017);
doi:10.1016/j.polymer.2017.07.057
Self-Assembly of Polymeric Particles in Poiseuille Flow: A Hybrid Lattice Boltzmann/External Potential Dynamics Simulation Study
Macromolecules 50 (11),
4474-4490
(2017);
doi:10.1021/acs.macromol.6b02684
Combining cell-based hydrodynamics with hybrid particle-field simulations: efficient and realistic simulation of structuring dynamics
Soft Matter 13 (8),
1594-1623
(2017);
doi:10.1039/c6sm02252a
Numerical reduction of self-consistent field models of macromolecular systems
Proc. Appl. Math. Mech. 16,
915-916
(2016);
doi:10.1002/pamm.201610446
A hybrid particle-continuum resolution method and its application to a homopolymer solution
The European Physical Journal Special Topics 225 (8-9),
1527-1549
(2016);
doi:10.1140/epjst/e2016-60096-8
Stimuli-Responsive Brushes with Active Minority Components: Monte Carlo Study and Analytical Theory
Macromolecules 48 (11),
3775-3787
(2015);
doi:10.1021/acs.macromol.5b00563
Using field theory to construct hybrid particle–continuum simulation schemes with adaptive resolution for soft matter systems
New Journal of Physics 15 (12),
125009
(2013);
doi:10.1088/1367-2630/15/12/125009
Contact
- Prof. Dr. Friederike Schmid
- Institut für Physik
- Universität Mainz
- Staudingerweg 9
- D-55128 Mainz
- Tel: +49 6131 3920365
- Fax: +49 5131 3920496
- Sekr: +49 6131 3920495
- friederike.schmidD@GuPIasgduni-mainz.de
- https://www.komet1.physik.uni-mainz.de/people/friederike-schmid/