Zur NavigationLogin

DE EN

Publications 2018

Understanding three-body contributions to coarse-grained force fields
Christoph Scherer, Denis Andrienko
Physical Chemistry Chemical Physics 20 (34), 22387-22394 (2018);
URL: http://dx.doi.org/10.1039/C8CP00746B
doi:10.1039/c8cp00746b

Tuning Transition Properties of Stimuli-Responsive Brushes by Polydispersity
Shuanhu Qi, Leonid I. Klushin, Alexander M. Skvortsov, Mingjie Liu, Jiajia Zhou, Friederike Schmid
Advanced Functional Materials, 1800745 (2018);
doi:10.1002/adfm.201800745

Curvature as a Guiding Field for Patterns in Thin Block Copolymer Films
Giang Thi Vu, Anabella A. Abate, Leopoldo R. Gómez, Aldo D. Pezzutti, Richard A. Register, Daniel A. Vega, Friederike Schmid
Physical Review Letters 121 (8), (2018);
Featured in https://physics.aps.org/synopsis-for/10.1103/PhysRevLett.121.087801
doi:10.1103/physrevlett.121.087801

Molecular Structure and Multi-Body Potential of Mean Force in Silica-Polystyrene Nanocomposites
Gianmarco Munao', Antonio Pizzirusso, Andreas Kalogirou, Antonio De Nicola, Toshihiro Kawakatsu, Florian Mueller-Plathe, Giuseppe Milano
Nanoscale, (2018);
doi:10.1039/c8nr05135f

Hybrid Particle-Field Molecular Dynamics Simulations of Charged Amphiphiles in an Aqueous Environment
Hima Bindu Kolli, Antonio de Nicola, Sigbjørn Løland Bore, Ken Schäfer, Gregor Diezemann, Jürgen Gauss, Toshihiro Kawakatsu, Zhong-Yuan Lu, You-Liang Zhu, Giuseppe Milano, Michele Cascella
Journal of Chemical Theory and Computation 14 (9), 4928-4937 (2018);
doi:10.1021/acs.jctc.8b00466

A fundamental catalytic difference between zinc and manganese dependent enzymes revealed in a bacterial isatin hydrolase
Theis Sommer, Kaare Bjerregaard-Andersen, Lalita Uribe, Michael Etzerodt, Gregor Diezemann, Jürgen Gauss, Michele Cascella, J. Preben Morth
Scientific Reports 8 (1), (2018);
doi:10.1038/s41598-018-31259-y

Structural Origin of Metal Specificity in Isatin Hydrolase from Labrenzia aggregata Investigated by Computer Simulations
Lalita Uribe, Gregor Diezemann, Jürgen Gauss, Jens Preben Morth, Michele Cascella
Chemistry - A European Journal 24 (20), 5074-5077 (2018);
doi:10.1002/chem.201705159

Intramolecular structural parameters are key modulators of the gel-liquid transition in coarse grained simulations of DPPC and DOPC lipid bilayers
Stefan Jaschonek, Michele Cascella, Jürgen Gauss, Gregor Diezemann, Giuseppe Milano
Biochemical and Biophysical Research Communications 498 (2), 327-333 (2018);
doi:10.1016/j.bbrc.2017.10.132

Convergence of a mixed finite element finite volume scheme for the isentropic Navier-Stokes system via dissipative measure-valued solutions
E. Feireisl, M. Lukacova-Medvidova
Found. Comput. Math. 18 , 703–730 (2018);
doi: DOI: 10.1007/s10208-017-9351-2

We study convergence of a mixed finite element-finite volume numerical scheme for the isentropic Navier-Stokes system under the full range of the adiabatic exponent. We establish suitable stability and consistency estimates and show that the Young measure generated by numerical solutions represents a dissipative measure-valued solutions of the limit system. In particular, using the recently established weak{strong uniqueness principle in the class of dissipative measure-valued solutions we show that the numerical solutions converge strongly to a strong solutions of the limit system as long as the latter exists.

Asymptotic preserving error estimates for numerical solutions of compressible Navier-Stokes equations in the low Mach number regime
E. Feireisl, M. Lukacova-Medvidova, S. Necasova, A. Novotny, B. She
SIAM Multiscale Model. Simul. 16 (1), 150–183 (2018);
URL: https://epubs.siam.org/doi/10.1137/16M1094233

We study the convergence of numerical solutions of the compressible Navier-Stokes system to its incompressible limit. The numerical solution is obtained by a combined finite element-finite volume method based on the linear Crouzeix-Raviart finite element for the velocity and piecewise constant approximation for the density. The convective terms are approximated using upwinding. The distance between a numerical solution of the compressible problem and the strong solution of the incompressible Navier-Stokes equations is measured by means of a relative energy functional. For barotropic pressure exponent larger than 3/2 and for well-prepared initial data we obtain uniform convergence of order. Extensive numerical simulations confirm that the numerical solution of the compressible problem converges to the solution of the incompressible Navier-Stokes equations as the discretization parameters and the Mach number tend to zero.

Unfolding dynamics of small peptides biased by constant mechanical forces
Fabian Knoch, Thomas Speck
Molecular Systems Design & Engineering, (2018);
doi:10.1039/c7me00080d

Contact

This page uses cookies. By continuing to visit this site you agree to our use of cookies.

More info